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Abstract

In this paper we propose a solution to the problems of detecting a generally correlated stochastic output delay sequence of a
linear system driven by Gaussian noise. This is the model for uncertain observations resulting from losses in the propagation
channel due to fading phenomena or packet dropouts that is common in wireless sensor networks, networked control systems,
or remote sensing applications. The solution we propose consists of a nonlinear detector which identifies online the stochastic
delay sequence. The solution provided is optimal in the sense that minimizes the probability of error of the delay detector.
Finally, a filtering stage fed with the information given by the detector can follow to estimate the state of the system. Numerical
simulations show good performance of the proposed method.

Key words: systems with time-delays; random measurement delays; identification methods; Kalman filtering; Networked
control systems; Wireless communications.

1 Introduction

In the last decades a lot of effort has been made to the
problem of state estimation and control of systems af-
fected by state process, actuators or sensors delays. In
this paper, we shall consider the class of discrete-time
linear systems driven by state and output Gaussian
noise and we shall focus on the case of random, time-
varying and generally correlated measurement delays.
Measurement delays can arise in uncertain observa-
tions resulting from losses in the propagation channel
due to fading phenomena, limited bandwidth or packet
dropouts. This situation is common in wireless sensor
networks, remote sensing applications and networked
control systems which are widely used because of their
flexibility dealing with complex systems (Hespanha
et al., 2007; Zhang and Yu, 2008). In recent years, ran-
dom delays have attracted great attention both from
the control and the state estimation point of view.
Stabilizing controls for systems with random delays in
the actuators have been addressed by Zhang and Li
(2015); Zhang et al. (2005) and Xiao et al. (2000) by
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using a coupled Riccati-type equation and jump sys-
tems approach, respectively. In the paper of Liu et al.
(2009) the stabilization problem for Markov jump lin-
ear systems is considered. Xie et al. (2009) and Shi and
Yu (2009) investigate the output feedback stabiliza-
tion of networked control systems in the deterministic
framework but with observations affected by random
delays, by adopting cone complementarity linearization
methods and the design via an iterative linear matrix
inequality (LMI) approach, respectively. As regards
the state estimation problem, many works have been
addressed in the stochastic framework (i.e. state and
output affected by stochastic noise sequences, Gaussian
in general) to filtering systems with intermittent ob-
servations or packet dropouts modeled as Bernoulli or
Markov chain sequence (Sinopoli et al., 2004; Huang
and Dey, 2007; Sun et al., 2008; Ma et al., 2011).
Fasano et al. (2015) addressed the problem of filtering
systems with intermittent observations with not neces-
sarily Markovian packet dropouts. For what concerns
specifically the state estimation problem with random
measurement delays, Sahebsara et al. (2007) and Zhou
and Feng (2008) consider the case of a bivalued sam-
pling delay, modeled as a Bernoulli random variable.
By using H2 and H∞-norm, an LMI-based filter design
approach has been developed. Song et al. (2009) have
used an H∞-norm and LMI techniques to deal with a
Markov chain measurement delays by assuming deter-
ministic square integrable state and measurement noise
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signals. Han and Zhang (2009) give a linear optimal
filtering algorithm in the case of stochastic state and
output noise signal by considering a two-valued Markov
measurement delay. Zhang et al. (2011) and Schenato
(2008) achieve some state estimation results in the case
of multiple random delayed measurements where the
random delay is known online, i.e. time-stamped. Fi-
nally, a bayesian approximation framework for nonlin-
ear filtering using cubature quadrature rule to evaluate
numerically multivariate integral expressions has been
developed recently by Singh et al. (2017). To the best
of our knowledge, few attempts have been made to es-
timate or detect the delay affecting dynamical systems.
Some techniques have been developed to identify the de-
terministic, fixed or time-varying state delay in the case
of continuous-time linear (Orlov et al., 2009; Drakunov
et al., 2006) and nonlinear systems (Loxton et al., 2010;
Zheng et al., 2013; Cacace et al., 2016, 2017). For, by
using the maximum a posteriori (MAP) probability de-
cision rule, we propose a method to identify online the
generally correlated multiple-valued stochastic output
delay which guarantees (with an approximation) the
minimum probability of error given the available ob-
servations. This technique has been recently employed
in the context of distributed estimation in the presence
of random communication failures by Battilotti et al.
(2018). Finally, we briefly discuss two different subse-
quent state estimation algorithms that can cope with
the delay detection strategy.
The paper is organized as follows. In Section 2 the prob-
lem statement with the description of the system model
and the assumptions we made is presented. Section 3
presents the optimal delay detection strategy by using
a suitable rewriting of the measurements and the MAP
probability decision rule. Subsequently, in Section 4 we
briefly discuss two state estimation algorithms based
on the delay detection strategy. Numerical simulations
show the good performance of the proposed detector
with respect to the detector of the Blom and Bar-Shalom
(1988) in Section 5 and finally, conclusions follow.

Notation. If A ∈ Rn×n, then A> denotes its transpose
and |A| denotes its determinant. If v1, . . . , vn are column
vectors in Rn, then v = col(v1, . . . , vn) denotes the vec-
tor v = [v>1 , . . . , v

>
n ]>. Moreover, if A1, . . . , Am ∈ Rn×n,

we denote with diag(A1, . . . , Am) ∈ Rmn×mn the block
diagonal matrix with entries A1, . . . , Am on the diag-
onal. The set of the row vectors of the canonical base
of a Euclidean space is denoted by E . In particular,
ei = (0, . . . , 0, 1, 0 . . . 0) ∈ E , with the one in the (i+ 1)-
th entry, and we define the function ind ·, such that
ind ei = i. IfA andB are two matrices in Rn×n, then the
Kroneker product is A⊗B. Moreover, we indicate with
A(i, j) the element of the matrix A in the i-th row and j-
th column. We indicate with In and 0n the identity and
zero matrices of dimension n, respectively. Moreover, we
denote with 0n×m the zero matrix in Rn×m and with δij
the Kroneker delta, namely δij = 1 if and only if i = j.

Finally, given a random variable X in the probability
space (Ω,F ,P), that will be implicit in the rest of the
paper, we denote with E[X] its expectation. We denote
with X ∼ N (µ, σ2) a Gaussian random variable X with
mean µ and variance σ2.

2 Problem Statement and Assumptions

Consider the following class of linear discrete-time Gaus-
sian systems

xk+1 = Axk + fk, k ≥ 0 (1)

yk = Cxk−τk + gk, (2)

where xk, fk ∈ Rn, yk, gk ∈ Rm, A ∈ Rn×n and C ∈
Rm×n. The random sequence {τk} represents the delay
affecting the measurement (2) and it takes value in the
set I = {0, 1, . . . ,∆} with ∆ a positive and known in-
teger. Clearly, if at time k we have τk = 0, then the
measurement equation (2) is not affected by any delay
and it gives information on the current state xk. More-
over, the covariance matrix of the state xk is denoted
by Σk = E[xkx

>
k ]. The initial state x0 and the random

sequences {fk}, {gk}, {τk} satisfy the following assump-
tions for k ≥ 0 :

1) If λ, s ∈ {−∆, . . . , 0} then xλ is a zero-mean Gaus-
sian random variable with E{xλx>s } = Σλδλs sym-
metric,

2) {fk} is a white sequence of zero-mean Gaussian
vectors with covariance matrix E{fkf>k } = Q > 0
symmetric,

3) {gk} is a white sequence of zero-mean Gaussian
vectors with covariance matrix E{gkg>k } = R > 0
symmetric,

4) For a fixed integer L ≥ 0 the following joint proba-
bility mass functions are known{

Pk(τk, . . . , τ0), for 0 ≤ k ≤ L
Pk(τk, . . . , τk−L), for k > L

5) x0, {fk}, {gk}, {τk} are statistically independent.

Note that Assumption 4 is a quite minimal requirement
on the statistics of the delay sequence. For instance, if
the output is characterized by an independent identically
distributed delay sequence, namely for each k ≥ 0 we
have P(τk = i) = pi with i ∈ I and known pi such that∑∆
i=0 pi = 1, then the joint probability mass function

Pk(τk, . . . , τk−L) = P(τk, . . . , τk−L) =
∏L
i=0 P(τk−i) is

fully characterized. In the paper, we shall provide the
solution for a generally correlated stochastic sequence
of the delay and we further exploit this solution to the
particular (but rather common) case of a Markov chain.
In the Markov chain case, the knowledge of the prob-
ability transition matrix of the chain and of the initial
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probability vector are sufficient to characterize the joint
probability mass function of Assumption 4. Hence, the
aforementioned assumption is quite minimal and it al-
lows us to state the problem for a generally correlated
delay sequence.

The goal of this paper is to detect the generally-
correlated stochastic time-varying delay τk in some
optimal way that we shall clarify in the next section.

We finally notice that the proposed method could be
readily extended to linear time-varying systems.

3 Optimal Delay Identification

In this section we consider the problem of detecting the
delay τk and we adopt the decision strategy exploited in
Fasano et al. (2015) for the problem of state estimation
in the case of intermittent observations. We choose as
optimal detector the one that guarantees the minimum
probability of error given the available observations at
time k ≥ 0, namely y0, y1, . . . , yk. This is equivalent to
the maximum a posteriori (MAP) probability decision
rule, namely

τ̂k = arg max
i∈I

Pk(τk = i | y0, y1, . . . , yk) (3)

where Pk(τk|y1, . . . , yk) is the probability mass function
of τk conditional on the available observations at time
k ≥ 0. A direct consequence is that the memory and the
complexity of the MAP detector (3) increase with time.
For, in order to obtain a detector with finite memory, it
is sufficient to carry out the decision on the last L + 1
measurements, with L ≥ 0, namely

τ̂k = arg max
i∈I

Pk(τk = i | yk, . . . , yk−L), (4)

which is the optimal decision rule used in what follows.
We need the following preliminary lemma.

Lemma 1 Given the random vector

xk := col(xk, xk−1, . . . , xk−∆̃), k ≥ L (5)

with ∆̃ = ∆ + L and xk defined recursively by (1), then
the covariance matrix Ξk = E

[
xkx

>
k

]
with k ≥ L is

given by

Ξk =


Σk AΣk−1 · · · A∆̃Σk−∆̃

Σk−1A
> Σk−1 · · · A∆̃−1Σk−∆̃

...
...

. . .
...

Σk−∆̃(A∆̃)> Σk−∆̃(A∆̃−1)> · · · Σk−∆̃



The proof is omitted.
We are now able to state the main theorem of this paper.

Theorem 1 Given the system (1)–(2) with the Assump-
tions 1–5, then for k ≥ L the MAP delay detector (4) is
given by

τ̂k = ind arg min
v∈E

∑
v1∈E

∑
v2∈E
· · ·

· · ·
∑
vL∈E

[
1

2
y>k S

−1
k (v)yk − log Pk(v)+

+
1

2
log |Sk(v)|

]
, (6)

where E is the set of the row vectors of the canonical basis
of R∆+1,

yk = col(yk, yk−1, . . . , yk−L),

v = (v, v1, . . . , vL), v, v1, . . . , vL ∈ E ,
Sk(v) = C(v)ΞkC>(v) +R,

with Ξk defined in Lemma 1,

C(v) =


v ⊗ C 0q×nL

0q×n v1 ⊗ C 0q×n(L−1)

. . .

0q×nL vL ⊗ C

 , (7)

R = IL+1 ⊗R. (8)

Remark 1 We note that on the right-hand side of equa-
tion (6), i.e. the delay detector, we only require the knowl-
edge of the last L+ 1 measurements, i.e. the vector yk.

Proof. We define the random vector Γk = eτk ∈ E ,
where eτk has the one in the (τk + 1)-th entry, and
let Γk = col(Γk,Γk−1, . . . ,Γk−L). Clearly, the ran-
dom quantity Γk is characterized by Pk(Γk, . . . ,Γ0) =
Pk(τk, . . . , τ0) and Pk(Γk, . . . ,Γk−L) = Pk(τk, . . . , τk−L),
for 0 ≤ k ≤ L and for k > L respectively. Consequently,
we can state the equivalent problem of (4) as the fol-
lowing minimization problem

Γ̂k = arg max
v∈E

Pk(Γk = v | yk, . . . , yk−L). (9)

We note that, bearing in mind the positions in the state-
ment of Theorem 1, the decision rule (9) can be written
as

Γ̂k = arg max
v∈E

P(Γk = v |yk)

= arg max
v∈E

∑
v1∈E
· · ·

∑
vL∈E

f(yk |Γk = v)Pk(Γk = v)

(10)
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where f(yk|Γk) is the probability density function of
yk conditional on Γk and Pk(Γk) is the probability
mass function of Γk, namely the joint probability mass
function of Γk, Γk−1, . . . ,Γk−L which is known by As-
sumption 4. Note that the probability density function
f(yk|Γk) is Gaussian since the augmented measurement
yk obeys to

yk = C(Γk)xk + gk, (11)

where gk = col(gk, gk−1, . . . , gk−L), C(·) is defined in
(7) and xk is defined in (5). Therefore, we have

yk|Γk ∼ N
(
0, C(Γk)ΞkC>(Γk) +R

)
, (12)

whereR is defined in (8) and Ξk is the covariance matrix
of xk defined in Lemma 1. Finally, the decision rule (10)
yields to

Γ̂k = arg max
v∈E

∑
v1∈E

∑
v2∈E
· · ·

· · ·
∑
vL∈E

exp
[
− 1

2y
>
k S
−1
k (v)yk

]
Pk(Γk = v)√

|Sk(v)|

= arg min
v∈E

∑
v1∈E

∑
v2∈E
· · ·

· · ·
∑
vL∈E

[
1

2
y>k S

−1
k (v)yk − log Pk(Γk = v)+

+
1

2
log |Sk(v)|

]
. (13)

It is clear that, by the definition of Γk, if at time k ≥ 0

we have Γ̂k = ei for some i ∈ I, then we have τ̂k = i,

namely ind Γ̂k = τ̂k, and the proof is completed.

We note that the proposed detector (6) is computed by
comparing the ∆ + 1 hypotheses v = ei with i ∈ I and
moreover, it has finite memory and a tradeoff between
performance and computational cost can be easily con-
trolled by changing the value of the memory L of the
detector.

Finally, we note that in the initial transient period k ∈
{0, 1, . . . , L}, it is possible to construct the optimal de-
tector (3) by using simply the detector (6) of Theorem
1 with time-varying memory L = k.

3.1 The case of Markov chain delay

If the delay sequence {τk} is a Markov chain with initial
probability vector

π0 =
[
P{τ0 = 0} P{τ0 = 1} · · · P{τ0 = ∆}

]
(14)

and probability transition matrix with elements

Πk(i+ 1, j + 1) = P{τk = j | τk = i}, (15)

with i, j ∈ I, then the probability mass function Pk(Γk)
takes the following expression

Pk(Γk) = π0

k∏
`=1

Π`Γ
>
k (16)

which simplifies in the case of homogeneous chain in

Pk(Γk) = π0ΠkΓ>k . (17)

Therefore, the probability mass function Pk(Γk) is given
by

Pk(Γk) =

L−1∏
`=0

Pk−i(Γk−` |Γk−`−1)Pk−L(Γk−L)

=

L−1∏
`=0

Πk−`(τk−`−1 + 1, τk−` + 1)Pk−L(Γk−L)

where Pk−L(Γk−L) is defined in (16). Note that in the
equation above we have exploited the definition of Γk.
In the case of homogeneous chain, the probability mass
function Pk(Γk) simplifies into

Pk(Γk) =

L−1∏
`=0

Π(τk−`−1+1, τk−`+1)Pk−L(Γk−L) (18)

with Pk−L(Γk−L) as in (17).

4 State Estimation

In this section we briefly discuss two state estimation
algorithms to solve the problem of filtering systems of the
form (1)–(2) that could cope with the proposed detector.

Kalman filtering based. The first method consists of a
Kalman filter applied to the extended system 1

xk+1 = Axk + fk (19)

yk = Cτkxk + gk, (20)

with Cτk
.
= eτk ⊗ C, where the real values of the delay

sequence {τk} are substituted with the detected ones
{τ̂k}. It is clear that the lower the probability of error of
the detector (6) is, the closer this estimate is to the ideal
one which use the real values of the delay. The algorithm
can be written as follows

x̂0 = 0, P0 = diag{Σ0, . . . ,Σ−∆} (21)

1 we note that in (19) the vector xk is defined as (5) but

with L = 0 (i.e. ∆̃ = ∆), thus the initial condition x0 is
properly defined by Assumption 1. Moreover, it is easy to
find A and the random vector fk (with covariance denoted
by Q) such that (19) holds true.
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τ̂k =


arg max

τk∈I
Pk(τk | yk, . . . , y1), if k < L

arg max
τk∈I

Pk(τk | yk, . . . , yk−L), if k ≥ L
(22)

x̂k|k−1 = Ax̂k−1 (23)

Pk|k−1 = APk−1A> +Q (24)

Kk = Pk|k−1C>τ̂k
·
(
Cτ̂kPk|k−1C>τ̂k +R

)−1
(25)

x̂k = x̂k|k−1 +Kk(yk − Cτ̂k x̂k|k−1) (26)

Pk = Pk|k−1 −KkCτ̂kPk|k−1, (27)

where the first n× n blocks of Pk|k−1 and Pk−1 are the
covariance matrices of the prediction and estimation er-
rors, respectively. Finally, we note that the first n entries
of x̂k return the estimated state x̂k.

IMM filtering based. For the algorithm presented in this
section we assume that the delay sequence {τk} is a
Markov chain. The proposed method is the combination
of the delay detection strategy exposed in Section 3 and
the IMM filter of Blom and Bar-Shalom (1988). In the
IMM algorithm the final state estimate is provided as
a weighted mean of intermediate estimates. In particu-
lar, by referring to Table I of Zhang and Li (1998), the
IMM algorithm can be modified by using the following
weights in the Mode probability update step

p̃k(i) =
P(τk = i|yk, . . . , yk−L)∑∆
j=0 P(τk = j|yk, . . . , yk−L)

. (28)

Note that (28) can be directly computed through the
argument of the maximization on the right-hand side
of (6). In fact, by setting ζi = col(ei, v1, . . . , vL), where
i ∈ I and v1, . . . , vL ∈ E∆, and

ηk(i) =
∑
v1∈E∆

· · ·
∑
vL∈E∆

[1

2
y>k S

−1
k (ζi)yk+

− log Pk(ζi) +
1

2
log |Sk(ζi)|

]
,

the weights in (28) can be written as

p̃k(i) =
ηk(i)∑∆
j=0 ηk(j)

. (29)

The overall scheme of the proposed methods is reported
in Figure 1.

5 Simulation Results

In this section we provide some numerical examples to
show the performance of the detector of Theorem 1 com-
pared with the detector of the IMM algorithm of Blom

Plant Sensor

Transmission
Channel

Optimal 
Detector

fk xk Cxk

gk

yk

yk Filter x̂k
⌧̂k

yk

Fig. 1. Overall scheme of the proposed approach.

and Bar-Shalom (1988). We consider a time horizon of
150 and 300 independent realizations.
We consider the linear discrete-time system of the form
(1)–(2) described by

A =

[
0.8 0.1

0 0.6

]
, C =

[
1 0

]
(30)

with {fk} and {gk} zero-mean and Gaussian with covari-
ance Q = 5 ·10−2 and R = 10−4, respectively. Moreover,
the initial conditions of the state are xλ ∼ N (0, I2) for
λ ∈ {−∆, . . . , 0}. We consider two cases for the delay
sequence {τk}, modeled as a Markov chain, namely two
different probability transition matrices

Π1 =


0.4 0.25 0.2 0.15

0.2 0.4 0.25 0.15

0.2 0.25 0.3 0.25

0.35 0.2 0.2 0.25

 , Π2 =


0.5 0.3 0.2

0.3 0.4 0.3

0.4 0.4 0.2

 .

Thus, in the case of Π1 the bound ∆ on the delay is
∆1 = 3, whilst in the case of Π2 the bound on the delay
is ∆2 = 2. Moreover, we assume that τ0 = 0, i.e. π0 =
(1, 0, . . . , 0).

In the first example, we show the dependency of the
detector of Theorem 1 on the memory L in the case with
Π1. Table 1 summarizes the results for all the values
of L ∈ {0, 1, 2, 3, 4}. It shows the probability of error,
namely

Perr
.
=

1

300

1

150

300∑
i=1

150∑
k=1

P{τ̂ (i)
k 6= τ

(i)
k }, (31)

where τ
(i)
k and τ̂

(i)
k are the delay and the detected de-

lay of the i-th realization of noise and delay sequence
at time k, and the percentage improvement α with re-
spect to the detector of the IMM algorithm, namely
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case Π1 Perr α

IMM detector 0.633 -

Proposed detector L = 0 0.702 -10.90%

Proposed detector L = 1 0.639 -0.95%

Proposed detector L = 2 0.581 8.21%

Proposed detector L = 3 0.540 14.69%

Proposed detector L = 4 0.536 15.32%

Table 1
Example 1. Scenario with Π1.Performance of the proposed
detector with memory L ∈ {0, 1, 2, 3, 4} and the detector of
the IMM algorithm in terms of the probability of error Perr

of (31) and the percentage index α. The time horizon and
the independent realizations are 150 and 300 respectively.

α =
(
P IMM

err − Perr

)
·100/P IMM

err , where P IMM
err is the prob-

ability of error of the IMM detector.

We see that the slight increase in computational cost is
well compensated by the improvement in performance.
When the value of the memory L of the detector in-
creases, then the probability of error decreases and it
tends to a limit value. This is intuitive since, in order to
estimate τk at time k > 0, further measurements convey
less information than the ones close to the current in-
stant k. In particular, we note that the proposed detec-
tor of memory L = 4 (i.e. carrying the five last measure-
ments in the delay identification process) has a proba-
bility of error of about 0.53. We note that, the detector
with memory L = 0 has similar performance of a triv-
ial detector which decides for the a priori “most prob-
able” value of the delay. In fact, we see as the steady
state probability transition matrix, i.e. limk→+∞Πk,
has rows (0.2862, 0.2828, 0.2379, 0.1931) and thus the
event {τk = 0} has the highest probability. Hence, by
setting as a trivial decision of the delay τ̌k = 0 for
any k ≥ 0, one would obtain a probability of error
Perr ' 1− 0.2862 = 0.7138 which is close to the proba-
bility of error of the detector of memory L = 0. We fi-
nally note that the proposed detector has finite memory
and a tradeoff between performance and computational
cost can be easily controlled by changing the value of the
memory L of the detector.

In the second example, we consider a fixed delay se-
quence, characterized by Π2, across the 300 independent
realizations of noises and initial conditions of the state.
Figure 2 shows the real delay sequence τk and the
mean across realizations of the detected ones, namely⌊

1
300

∑300
i=1 τ̂

(i)
k

⌋
, where b·c is the floor function.

Table 2 summarizes the results. In particular, it shows
the values of the probability of error computed as (31)
for the proposed detector of memory L = 3 and the one
of the IMM algorithm. As Table 1 highlights, we see that
the proposed detector with memory L = 3 improve the
probability of error of the detected delay with respect
to the IMM algorithm of about 28%. We finally stress

k
50 60 70 80 90 100

D
el

ay

0

1

2

τk
τk detected

Fig. 2. Plot of 50 time steps of the real delay τk characterized
by Π2 and the detected one τ̂k with the detector of memory
L = 3.

case Π2 Perr α

IMM detector 0.545 -

Proposed detector L = 3 0.390 28.12%

Table 2
Example 2. Scenario with Π2. Performance of the proposed
detector with L = 3 and the detector of the IMM algorithm
in terms of the probability of error Perr of (31) and the
percentage index α. The time horizon and the independent
realizations are 150 and 300 respectively.

that, in contrast with the IMM detector, the proposed
detector can be applied to a generally correlated delay
sequence.

6 Conclusions

In this paper a solution to the problem of detecting the
stochastic generally correlated output delay sequence of
a linear system with Gaussian noise is given. We adopt
as optimal detector the one that guarantees the min-
imum probability of error given the available observa-
tions, which is equivalent to the maximum a posteriori
(MAP) probability decision rule. The proposed detec-
tor has finite memory and a tradeoff between perfor-
mance and computational cost can be easily controlled
by changing the memory of the detector. Finally, a filter-
ing stage can cope with the proposed detector. Numeri-
cal comparisons with the detector of the IMM algorithm
show good performance of the proposed method.
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